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This paper describes a method for produc-
ing speech synthesis, without the need for
signal processing, by using re-sequencing of
carefully selected phone-sized segments from
a pre-recorded speech corpus. The genera,f,ed
speech faithfully reproduces the voice char-
acteristics and speaking style of the original
to create novel utterances.

The process involves creating an index
of phones and their prosodic characteris-
tics for each utterance in the corpus. The
re-sequencing synthesiser doesn’t necessarily
produce any sounds; it merely determines
an optimal sequence for random-access re-
play from the original speech to givé the best
approximation to a desired utterance from
the segments available in a given speech cor-
pus. The synthesis method is independent of
language or speaker but requires a sufficient
source database that represents a balanced
sample of the language '

To find the optimal sequence of segments
for concatenation, the synthesiser selects
from amongst candidates in the database us-
ing a weighted combination of their acous-
tic and prosodic features to maximize con-
tinuity between segments while at the same
time minimising the distance of each from a

given prosodic target. Optimal performance
is'achieved by under-specification of prosody,
so that only key points in the utterance have -
targets and the remainder are considered
In conjunction with
loose selection of units from a continuous-
speech corpus, prosodic under-specification

prosodically neutral.

maximises the number of candidate segments
and uses the redundancy of information in
natural speech to reduce or eliminate distor-
tions in the output synthesis.

1 Background

Conventional speech synthesis methods
use a limited inventory of phonemes, di-
phones, or demisyllables as basic speech
units. To account for contextual phonetic ef-
fects from surrounding segments, Nakajima.
and Hamada [12, 6] proposed a Context-
Oriented-Clustering method to automati-
cally produce an optimal source unit set
by using a statistical clustering technique.
For Japanese, this resulted in approximately
1500 speech units. At the same time, Sag-
isaka proposed a scheme for the selection of
non-uniform units [13, 15, 14, 11], to be ex-
cised at synthesis time from a database of
5000 recorded words. The units were selected
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according to a weighted minimisation of con-
textual spectral distance, acoustic typicality,
concatenation cost, a,ndj a spectral disconti-
nuity measure [14]. Both the above methods
used parametric coding of source units to al-
low modification after concatenation to warp
the unit sequence to the desired intonation.
Parameterisation of the speech waveform
can be major source of distortion in the
output speech because of a) oversimplified
pulse/noise excitation, and b) mismatch be-
tween vocal tract spectra and source spectra
arising from the prosodic modification. Hi-
rokawa [7, 8, 9] proposed a large-database
waveform-dictionary approach to concatena-
tive speech synthesis as a solution to this
problém, and achieved high-quality speech
output by using a very large inventory of
source waveforms. He recorded two hours
of speech from an adult male to produce
a dictionary of 35000 phoneme-length wave-
form segments identified by duration, av-
erage pitch, pitch contour and average en-
ergy. They were classified under 35 phone-
mic labels and selected by matching both
prosodic (accent type and position in breath
group) and phonetic attributes. The acoustic
phonetic segments were determined manually
and sépa,ra,ted at zero-crossing points clos-
est to the phoneme boundary labels before
being sub-categorised according to prosodic
criteria. For selection, pitch was weighted
more heavily than amplitude or duration be-
cause of the relative difficulty of modifying
the former. An evaluation function was used
to compute for each candidate segment the
difference between the desired prosody pat-
tern for synthesis and the waveform prosody
characteristics, making use of an experimen-
tally defined balance factor for the weighting
between ‘active selection’, based on the pho-
netic environment, and ‘static selection’, de-
rived from the prosody. When no candidate

waveforms exceeded a pre-determined selec-
tion threshold, parametric synthesis was used
to create an appropriate segment. ‘

The present work extends the above meth--
ods by automating dictionary construction
and thus enabling the use of any arbitrary
speech database as a source for synthesis
units, and by defining context-specific selec-
tion criteria that eliminate the need for signal
processing,.

2 Prosodic under-specification

It is clear from the above that high quality
synthesis depends both on appropriate seg-
mental and prosodic contexts for each source
unit. Given an infinitely large source corpus,
and an efficient index into it, we could no
doubt produce concatenative synthesis that
is indistinguishable from human speech, but
with a medium-sized corpus, e.g., containing
only about thirty-minutes of varied continu-
ous natural speech, we must optimise the se-
lection of candidate segments so that discon-
tinuities between adjacent segments are min-
imised on concatenation while at the same
time selecting only from those that already
meet the intonational requirements. How-
ever, because the ear 1s insensitive to small
differences in duration, power and pitch, we
can often substitute close alternatives to the
prosodically ideal segment without recourse
to waveform surgery. We can therefore take
advantage of the considerable variation in
prosodic realisation of different speakers, and
of the redundancy of information cues in
speech, to provide adequate cues only at key
points in the prosodic contour of a synthe-
sised utterance. .

By under-specifying the prosody except at
phrase boundaries and accent peaks we open
up greater freedom of choice for intermedi-
ate candidate segments so that continuity
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in the prosodic and spectral domains can
dominate throughout unmarked portions of
the speech. By preferential weighting at ac-
cents and boundaries, we ensure that the con-
catenated speech contains appropriate spec-
tral as well as prosodic cues, such as in-
creased spectral tilt at prominences, creak
and natural power drop pre-pausally, and
breath intake utterance initially. By includ-
ing ‘accent’ and ‘boundary’ positions as fea-
tures in the selection targets, and using a
five-phone search window to define ‘context’
(current + 2), we increase the weighting on
these ‘prosodic’ criteria without recourse to
heuristics. The ‘smoothing’ between seg-
ments can then be left to a Viterbi selection
process that favours maximally similar can-
didates (both spectrally and prosodically).
Since the average prediction error for seg-
“mental duration is currently reported to be
about 25 msec for vowels and 15 msec for
consonants (and for power 2.2 and 2.5 dB
RMS respectively), then rather than force the
“waveform segments to values that we (only
approximately) predict for a given context,
and thereby induce distortion, we consider it
preferable to accept a rather loose match be-
tween predicted and actual prosody and in-
stead to use that flexibility to minimise dis-
continuity in the joins between segments. Be-
cause segments are concatenated from natu-
ral continuous speech sources, key prosodic
events are redundantly marked by spectral
as well as intonational parameters so the per-
cept of the resulting speech will be more nat-
ural and the variation in unmarked locations
perhaps overlooked, as in human production.

3 Synthesis as re-sequencing

It is customary to consider source units as
an integral part of the synthesiser, but by
annotating a pre-existing speech corpus with
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an index for each phon(em)e according its
prosodic environment we produce an inter-
changeable external source. The synthesiser
then becomes a retrieval device for random-
access re-sequencing that is independent of
the source corpus. By this step the synthesis
is freed from language-dependencies and from
the need to explicitly model speaking style,
voice quality, or individual prosodic varia-
tion. All are determined as a consequence of
the choice of corpus, requiring only a map-
ping between the transcription labelling and
a specification of the target utterance for syn-
thesis. Prosodic details are specified as z-
scores, so that selection in terms of speaker
norms will naturally constrain all parameters
to within the range of each individual corpus.

Chatr synthesis 2, 4] relies on the fact that
a speech segment can be uniquely described
by the joint specification of its phonemic
and prosodic environmental characteristics.
The synthesiser performs a retrieval func-
tion, first predicting whatever information is
needed to complete a specification from an
arbitrary level of input and then indicating
the database segments that best match the
predicted target specifications. The basic re-
quirement for input is a sequence of phone la-
bels, with associated fundamental frequency,
amplitudes, and durations for each. If only
words are specified in the input, then their
component phones will be generated from the
lexicon or by rule; if no prosodic specification
is given, then a default intonation will be pre-
dicted from the information available.

Chatr pre-processing of a new source
database has two stages. First, an analysis
stage that takes as input an arbitrary speech
corpus with (at least) an orthographical tran-
scription, and produces a feature vector de-
scribing the prosodic and acoustic attributes
of each phone in that corpus. Second, a
wetight-training stage that takes as input the



feature vector and a waveform representa-

tion, and produces from it a set of weight
vectors that describe the contribution of each
feature towards predicting the best match to
a given target specification.

At synthesis time, the selection stage takes
as input the feature vectors, the weight vec-
tors, and a specification of the target utter-
ance, to produce an index into the speech cor-
pus for random-access replay to produce the

target utterance. For a given target speci-

fication, {7 = (f1,...,%,), the optimal set of
units u? = (u1,...,us) is selected from the
corpus so that the desired prosodic character-
istics are realised and the units concatenate
together smoothly with minimal distortion.
The units are determined by a Viterbi search
of the closest n candidates to find the path
with the cheapest cost, minimising both dis-
tance from target and continuity distortion
between segments(3, 10].

b oo

Minimising two distance measures

3.1 Two distance measures

The target cost, C*(us,t;), is an estimate -

of the difference between a database unit u;
and the target ¢; it is to represent. The
cost is calculated. as the weighted sum of the
differences between the elements of the tar-
get and candidate feature vectors: these dif-
ferences are the p target sub-costs, Ci(t:, u;)
(j-= 1,..,p). The number of features, p,
is database-specific, but typically about 25.
The target cost, given weights w} for the sub-
costs, is expressed as

fe1 WiCH(H, i)

Ct(tg,u;) =

The concatenation cost C°(u;—1,;), is an
estimate of the quality of a join between con-
secutive units (u;_; and u;), determined by
the weighted sum of ¢ concatenation sub-
costs, Cf(ui—1,wi) (j = 1,...,q). The sub-
costs are calculated for u;_1 and u; from dis-
tances of vector-quantised cepstral measures
at the point of concatenation, from absolute
differences in log power and pitch, and from
differences in the estimated R-K voice-source
parameters TL, 0Q, and GN [5].

The concatenation cost, given weights wg,
is calculated as below. If ;. and u; are con-
secutive units in the synthesis database, then
their concatenation cost is zero.

C%(uimy, Ui} = Tt wECH(uim1, i)

The aim of the unit selection is to find the
best combination of units @} from those avail-
able in the database that come closest to
the specification of the novel utterance for
synthesis. Selection of the optimal unit se-
quence is achieved by minimising the total.
cost T} = miny, ..., C(t7,u}). The total cost
for a sequence of n units is the sum of the tar-
get and concatenation costs and subcosts for °
each of the features.

C(t7,uf) = iy har wiCi(ti, w)
+ Xy Xy wiC5 (21, 1)

3.2 Weight training

The weight-training stage of database
analysis provideé a phone-dependent weight
set (different weights, w}, for selecting differ-
ent phones) by a three-stage process.

The weights for determining the target
costs and sub-costs are calculated using the
waveforms of the na,tura.lispeech which are
available in the synthesis database. Treating
the database as a closed set for training, we
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ermploy a one-held-out algorithm to find the
closest equivalents for each phone in turn. By
ranking these according to an objective dis-
tance measure we can determine the contri-
bution of each of the descriptive features to
the selection of an optimal substitute phone.
In synthesis, when no such objective target
is available, we can use the same weighting
of features to select an optimal segment se-
quence for the synthesis of a novel utterance.

Stage one of the weight training requires
describing each phone in the database in
terms of the features that can be used for
selection. These include phonetic features,
such as place and manner of articulation,
and prosodic features such as the pitch, du-
ration and energy of the current and neigh-
bouring segments. Stage two of the training
holds out each phone in turn as a potential
target and ranks the remainder by a time-
normalised weighted Euclidean cepstral dis-
tance to determine which features contribute
most in selecting the best candidate. Stage
three uses linear regression analysis to assign
weights for each feature according to the im-
portance of each in the various contexts of
selection [1, 10].

4 Summary

Chatr is a system for synthesing speech
from a large natural corpus that minimises
the processing in order to maximise the nat-
uralness of its output speech. Chatr makes
no use of parametric signal coding or explicit
manipulation of pitch or duration. It requires
instead careful indexing and selection from
a very large number of source units. The
basic unit of synthesis is the phoneme, rely-
ing on the source database to contain a suf-
ficient representation of phones in a variety
of prosodic contexts. Selection of the appro-
priate sequence of units from the database

is done so that the phones are both maxi-
mally close to the desired prosodic target and
at the same time have minimal discontinuity
when concatenated. In order to meet these
two criteria, the selection weightings are as-
signed on a feature-by-feature basis for each
phone class.

Whereas most of the processing is auto-
matic, and a complete new voice as been
made in less than a day, from initial record-
ing to final synthesis, there is still a need
for manual intervention in the analysis and
training stages. Although auto-aligning is
highly developed, there are occasions when
the labelling can be improved by manual
post-processing, and the quality of the syn-
thesised output then increases accordingly.
However, as a result of this manual interven-
tion, it is inevitable that errors will appear in
the labels, which complicate the later train-
ing and require further manual intervention.
The brunt of future work will therefore focus
on making the entire process as automatic as
possible, incorporating more speech recogni-
tion technology to improve the labelling, and
reducing the subsequent processing required
for synthesis. ,

Another- interesting direction for future
work concerns prosodic prediction in the
text-to-specification stage of the synthesis.
There is a circuitous redundancy when fea-
tures of the database such as prominence,
part-of-speech, and proximity to a boundary
are used to predict e.g., duration and pitch,
which are in turn used to select units from the
corpus. The units will be likely to come from
contexts that match the original structural
specification. However, since the predictions
from the prosodic features can never be per-
fect, it would be more sensible to characterise
the required segments directly in terms of the
structural context and do without the inter-
mediate numeric predictions. The units se-
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lected from appropriate contexts (described
according to a given set of features directly)
are most likely to have the durations and
pitch characteristics that we were {rying to
“predict anyway. This removes yet another
component from the synthesis system, pro-
ducing a faster simple indexing and selection
machine. ’

Future versions of Chatr will be smaller,
doing less work, but requiring more source
data. Since Chatr is best suited for closed-
domain synthesis, these corpora should not
be difficult to collect, but by requiring ever
more variety in the types of phone repre-
sented, the size of the source corpus will also
become a significant consideration. The third

area for future work might therefore focus on

reducing the size of the database, selecting a
rich subset instead of using the entire corpus,
but since the trend in computer design is still
in favour of larger and faster machines, par-
ticularly geared for multimedia access, this
can take a lower priority for the time being.
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